A. 十七世纪的科学革命最伟大的科学成就是什么
17世纪最伟大的科学成就是数学。奠定了今后科技的发展。微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 微积分学是微分学和积分学的总称。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
微积分的基本内容 :研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
微分学的主要内容包括:定积分、不定积分等。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
B. 17世纪自然科学最伟大的成果
行星运动三定律 丹麦天文学者、布拉格天文台台长第谷,从1576年起,二十年如一日和助手们进行了大量的天文观测工作。他的观测结果比前人准确50倍,几乎达到肉眼观测精度的极限,是望远镜发明以前最卓著的天文观测。 1601年,第谷临死前把全部观测资料交给新来的青年助手开普勒,开普勒信仰哥白尼的目心说,相信宇宙可以用数学来表示。他为计算出的行星运转圆形轨道与精确观测的结果不符合而苦恼。他寻求更简单、更合理的数学方法来表示天体。最后他放弃了哥白尼的圆形轨道和匀速运动的观点,以第谷留下来的精确资料为基础进行分析,大胆地提出了“火星绕太阳的运行轨道是椭圆,太阳位于椭圆的一个焦点上”这一假设。结果与第谷观测的资料相一致辞。就这样,在第谷精确观测的基础上,开普勒通过深入研究,终于在1609年必表了两星运动定律。第一个定律是:轨道是椭圆,太阳在一个焦点上。第二个定律是面积定律:在相等的时间内,行星和太阳的连线所扫过的面积相等,1619年,开普勒在进一步研究的基础上,又发表了行星运动的第三个定律——周期定律。周期定律是:任何一颗行星公转周期的平方同行星到太阳的平均距离的立方成正比,为了纪念开普勒对会星运动规律的重大贡献,后人将这三个行星运动定律命名为开普勒三定律。 开普勒三定律首次定量地提示了行星运动速度变化和轨道的关系,而运动速度变化又直接和作用力相联系。 微积分的发明 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 细胞学说 细胞学说的创立 早在17世纪,显微镜刚刚问世的时候,物理学家胡克就在显微镜下看到软木薄片是由许多蜂窝状的小结构组成的现象。他将这些小结构命名为"细胞",这是细胞一词的第一次出现。18世纪,生物的显微研究未取得新的成就,而且生物学家热心关注着的是对分类学的研究,对生物微观方面的实验有所忽视。18世纪末和19世纪初,许多科学家试图在植物界和动物界中寻找结构方面的基本单位。如:德国诗人、生物学家歌德认为植物的叶是一切植物的基本单位。德国自然哲学家奥肯认为:一切生物都是由一种称为"粘液囊泡"的基本单位构成的。到19世纪显微镜的制造技术有了进步,使显微镜的分辨率提高,为考察动、植物的微观结构创造了条件。至19世纪30年代,一些科学家在显微镜下观察到细胞的细胞质、细胞核、细胞壁等结构以及细胞质的运动,而且动物体内也发现了细胞。这一时期的工作为细胞学说的建立创造了条件。 细胞的存在已是众所周知的事实,但人们对它的内部结构和功能以及在生物体中所处的地位还不太清楚。细胞学说最终是由德国植物学家施莱登(1804--1881)和动物学家施旺(1810--1882)完成的。 施莱登1804年生于汉堡的一个医生家庭。他早年学的是法律,在汉堡做过一段时间的律师,但他不喜欢这份工作。1833年,他决定改行,在哥廷根大学和柏林大学学习植物学和医学。在这期间,他对植物学产生了浓厚的兴趣。1837年,施莱登完成了一篇论文,该论文论述了显花植物的胚芽发育史。他强调研究植物学必须摒弃当时的抽象推论方法,而代之以严密的观察,并在观察基础上进行严格的归纳。当时的植物学仍然以研究分类学的工作为主,而施莱登却开始研究植物的结构和植物的发育了。 1838年,施莱登开始研究细胞的形态及其作用。同年他发表了《植物发生论》一文。在论文中,他提出:无论怎样复杂的植物体,都是由细胞组成的,细胞不仅自己是一种独立的生命,而且作为植物体生命的一部分维持着整个植物体的生命。 在1838年10月的一次聚会上,施莱登把还未公开发表的《植物发生论》中对有关植物细胞结构的情况,以及细胞核在细胞发育中的重要作用等方面的认识告诉了同在缨勒实验室工作的施旺,引起了施旺的兴趣。 施旺于1810年生于莱茵河畔的诺伊斯,父亲是一个金匠。施旺中学毕业后去学医,1834年获得博士学位后,成为著名生理学家缨勒的助手。在缨勒的指导下,他对较多的学术领域产生了兴趣。他曾研究过组织学、生理学、动物学、微生物学,并作出了不少贡献。例如,他曾发现胃蛋白酶;他还发现了神经纤维周围的纤维细鞘,后来该纤维细鞘被称为"施旺神经鞘"。 与施莱登的会面,使施旺猛然想起从前在观察蝌蚪背部的神经索细胞和软骨细胞时,发现它们都具有细胞膜、细胞质和细胞核。这时他便意识到,也许在植物体中起着基本作用的细胞,在动物体内也有着相同的作用。施旺对一些特化的组织,如上皮、蹄、羽毛、肌肉组织、神经组织等进行研究,得到的结论是:无论什么组织,尽管它们在功能上是不同的,但它们都是由细胞发育而来或是细胞分化的产物。 1839年,施旺发表了题为"动、植物结构和生长的相似性的显微研究"的论文,指出一切动、植物组织,无论彼此如何不同,均由细胞组成。他写道:"我们已经推倒了分隔动、植物界的巨大屏障,发现了基本结构的统一性。"他认为,所有的细胞无论是植物细胞还是动物细胞,均由细胞膜、细胞质、细胞核组成。 在1838-1839年,施莱登和施旺分别发表了植物细胞和动物细胞基本认识的专著。他们两人取得完全一致的看法,创立了细胞学说,即一切植物和动物都是由细胞构成的,细胞是生命的结构和功能的基本单位。 细胞学说一经确立,马上显示出其生命力,大大促进了生物学的发展,十几年里迅速被推广,并日臻完善。细胞学说的提出对生物科学的发展具有重大的意义。恩格斯说:"有了这个发现,有机的有生命的自然产物--比较解剖学、生理学和胚胎学才获得了巩固的基础。"细胞学说与达尔文的进化论和孟德尔的遗传学被称为现代生物学的三大基石,而实际上可以说细胞学说又是后两者的"基石"。细胞学说在哲学上也具有重要的意义,它使千变万化的生物界通过具有细胞结构这个共同的标准特征而统一起来。同时有力地证明了生物彼此之间存在着亲缘关系,为生物进化理论奠定了基础。恩格斯认为细胞学说的建立是最令人信服地检验了辩证唯物主义的正确性。他把细胞学说、进化论、能量守恒和转化定律列为19世纪的三大科学发现。 此后,在细胞学说的基础上,人们对生物界进行了更深人的研究,发现了细胞的全能性,即任何细胞都具有发育成完整个体的潜在能力。根据这一理论,人们发展了组织培养、克隆技术等高科技的生物技术。
C. 16、17世纪欧洲取得的两个科学成就。
16世纪哥白尼的日心说,17世纪牛顿的经典物理学。沉重地打击了教会的宇宙观,这是唯物主义和唯心主义斗争的伟大胜利,推动了科学革命。
D. 从17世纪到21世纪世界科学技术发展具有怎样的特点
17世纪中叶至19世纪末,是西欧资本Z义形成和发展的时期,也是近代化学孕育、确立和繁荣时期.200多年中,世界化学中心发生了三次转移.考察转移的历史背景,探究这些国家化学研究领先地位的确立及其因由,对现代化学及我国化学事业的发展具有重要的现实意义.
一、近代化学在英国孕育
近代化学开始的标志是17世纪波义耳提出了元素的概念,第一次明确了化学作为独立学术的研究价值.自17世纪中叶到18世纪后期,英国的化学研究一直走在世界前列,如布拉克、普里斯特列、卡文迪许的气体研究、戴维的电化学研究、道尔顿的原子论等都堪称划时代的成果.
教育是科学发展的强大动因.“一个国家先成为教育中心而后才能成为科技中心,科技中心往往在教育高峰期到来,教育兴隆期越长,科技兴隆期就越长.”②16世纪末17世纪初,培根、洛克等人的教育思想确立了英国教育中心的地位,17—18世纪,英国十分重视高等学校的改制,在牛津和剑桥的基础上,对一些老院校如1597年建校的格列普学院加以改革,增设了新的系科和专业,将物理、化学等作为主要课程.还在英格兰建立了北安普敦高等专门学院、惠灵顿学院、曼彻斯特学院等;在苏格兰建立了爱丁堡大学、格拉斯哥大学.普里斯特列曾任教于惠灵顿学院;道尔顿曾在曼彻斯特学院讲授化学;布拉克毕业于格拉斯哥大学,并留校任教,后又担任爱丁堡大学化学教授.布拉克是一位杰出的化学教育家,在当时化学教育的起步探索阶段,他提倡化学教育与化学进展保持密切联系,使学生能及时触摸到化学发展的时代脉膊,并投入到研究中;他还提倡演示实验,使学生从实践中获取知识.很多著名化学家都出自他的门下,如美国第一位化学教授拉什、氮气的制取者卢瑟福等.
科研组织形式对科学发展起到了最有效的推动作用.17世纪初,英国一些对科学感兴趣的医生、牧师等就常常聚会,交流科学观点.而当社会生产提出的课题远远超出个人能力时,这种智力上的切磋和学术上的交流更显得日益重要,聚会也就变得经常化和制度化,从而导致了科学学会的出现.最初是“无形学院”.1662年英王正式恩准将“无形学院”命名为“皇家学会”,这表明科学的社会意义得到了公认.皇家学会的化学家定期作学术报告、演示实验、收集资料并出版《哲学会刊》,还建立了委员会指导学术活动,有力地推动了英国化学研究和化学教育的发展.18世纪中叶,伯明翰成立了“月社”,由于化学家普里斯特列、布拉克等人的参与,化学成为主要课题,扩大了化学学科的影响,推动了化学知识在英国的传播.
当时英国的科学普及特别受到重视,政F建立了职业技术学校,成立了各种学术团体,人们以f.培根的“知识就是力量”为动力,倡导科学的认识论和方法论,研究科学、学习科学成为时尚,不少王公贵族建立了私人实验室.这种崇尚科学的社会氛围无疑对化学的发展起到了积极的推动作用.
18世纪后期,斯图亚特王朝的复辟和神学思想的再度兴起以及科学教育制度不健全,使英国失去了教育中心的地位,加之政F没有给予科学活动以资助和组织,皇家学会也仅是官方认可的群众性组织,终因经费短缺和充斥了一些游手好闲的纨裤子弟而几乎成了社交俱乐部.英国不可避免地失去了化学中心的地位.
二、近代化学在法国确立
18世纪末到19世纪初,世界化学中心从英国转移到了法国,这在很大程度上应归功于拉瓦锡的辉煌业绩和他所享有的崇高威望.拉瓦锡创建了燃烧氧化学说和科学的元素观,完成了化学领域上一次重大革M.同时法国出现了孚克劳、贝托雷、盖.吕萨克、杜马、罗朗、日拉尔、路布兰等一大批优秀化学家,使法国的化学研究突飞猛进,取代了英国化学中心的地位.
法国的启蒙运动是一次伟大的思想运动,它高举民Z与科学两面大旗,彻底JF了法国的科学,全面系统地引进和整理了以英国为中心的近代科技成果,为法国科学的腾飞形定了理论体系和思想方法.启蒙运动的代表人物伏尔泰、狄德罗、卢梭、达兰贝尔等,不仅是伟大的思想家、哲学家,还是科学家,他们极力提倡研究和普及自然科学.1789年爆发的法国资产阶级革M是一次比100多年前英国的资产阶级革M更加彻底的革M,它从根本上消灭了封建制度,为科学技术的突飞猛进创造了条件.
第一次世界大战,德国虽是战败国,但整个化学研究队伍没有太大的损失,从1921—1945年,共有25名化学家获得诺贝尔奖,其中德国占10名,虽然与其它任何一个国家相比,它在数字上都占绝对优势,但XTL上台后,疯狂推行种族灭绝政策,造成大批优秀科学家流亡国外,严重破坏了科学发展的后劲.二战以后,1946—1960年间,共有21名化学家获得诺贝尔奖,其中德国3人,美国9人,英国6人,号称“头号获奖大国”的德国失去了这一殊荣,也表明世界化学研究中心已从德国转移到了美国.
近代化学的产生与发展再一次雄辩地证明了社会体制、经济发展与科学技术进步的辩证关系.现代世界化学中心一直在美国,我们期望21世纪中国能成为世界教育的中心、科技的中心,在不久的将来中国能实现诺贝尔奖零的突破.
E. 请分别列举17世纪到19世纪,中西方科技发明成果各一项
B试题分析:本题考查阅读图表,分析归纳的能力。题干中的表格主要列回举了三次工业(答科技)革命一些重要发明成果的研究年限、生产推广年限,反映了科学成果从发明到应用的时间越来越快、科技成果转化为生产力的周期越来越短。②说法较绝对;④第一次工业革命时期的科学成果都是技术进步推动的,与科学理论重大突破无关。故选B。
F. 17世纪世界最辉煌的科学成就
天文方面:哥白尼的“日心说”和开普勒的行星运动三大定律。无力方面:伽利略的自由落体运动定律,伽利略相对性原理和惯性定律。牛顿的经典力学理论。生物方面:威廉.哈维的血液循环理论。
G. 17世纪自然科学四大成果
行星运动三定律
丹麦天文学者、布拉格天文台台长第谷,从年起,二十年如一日和助手们进行了大量的天文观测工作。他的观测结果比前人准确50倍,几乎达到肉眼观测精度的极限,是望远镜发明以前最卓著的天文观测。
1601年,第谷临死前把全部观测资料交给新来的青年助手开普勒,开普勒信仰哥白尼的目心说,相信宇宙可以用数学来表示。他为计算出的行星运转圆形轨道与精确观测的结果不符合而苦恼。他寻求更简单、更合理的数学方法来表示天体。最后他放弃了哥白尼的圆形轨道和匀速运动的观点,以第谷留下来的精确资料为基础进行分析,大胆地提出了“火星绕太阳的运行轨道是椭圆,太阳位于椭圆的一个焦点上”这一假设。结果与第谷观测的资料相一致辞。就这样,在第谷精确观测的基础上,开普勒通过深入研究,终于在1609年必表了两星运动定律。第一个定律是:轨道是椭圆,太阳在一个焦点上。第二个定律是面积定律:在相等的时间内,行星和太阳的连线所扫过的面积相等,1619年,开普勒在进一步研究的基础上,又发表了行星运动的第三个定律——周期定律。周期定律是:任何一颗行星公转周期的平方同行星到太阳的平均距离的立方成正比,为了纪念开普勒对会星运动规律的重大贡献,后人将这三个行星运动定律命名为开普勒三定律。
开普勒三定律首次定量地提示了行星运动速度变化和轨道的关系,而运动速度变化又直接和作用力相联系。
微积分的发明
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
细胞学说
细胞学说的创立
早在17世纪,显微镜刚刚问世的时候,物理学家胡克就在显微镜下看到软木薄片是由许多蜂窝状的小结构组成的现象。他将这些小结构命名为"细胞",这是细胞一词的第一次出现。18世纪,生物的显微研究未取得新的成就,而且生物学家热心关注着的是对分类学的研究,对生物微观方面的实验有所忽视。18世纪末和19世纪初,许多科学家试图在植物界和动物界中寻找结构方面的基本单位。如:德国诗人、生物学家歌德认为植物的叶是一切植物的基本单位。德国自然哲学家奥肯认为:一切生物都是由一种称为"粘液囊泡"的基本单位构成的。到19世纪显微镜的制造技术有了进步,使显微镜的分辨率提高,为考察动、植物的微观结构创造了条件。至19世纪30年代,一些科学家在显微镜下观察到细胞的细胞质、细胞核、细胞壁等结构以及细胞质的运动,而且动物体内也发现了细胞。这一时期的工作为细胞学说的建立创造了条件。
细胞的存在已是众所周知的事实,但人们对它的内部结构和功能以及在生物体中所处的地位还不太清楚。细胞学说最终是由德国植物学家施莱登(1804--1881)和动物学家施旺(1810--1882)完成的。
施莱登1804年生于汉堡的一个医生家庭。他早年学的是法律,在汉堡做过一段时间的律师,但他不喜欢这份工作。1833年,他决定改行,在哥廷根大学和柏林大学学习植物学和医学。在这期间,他对植物学产生了浓厚的兴趣。1837年,施莱登完成了一篇论文,该论文论述了显花植物的胚芽发育史。他强调研究植物学必须摒弃当时的抽象推论方法,而代之以严密的观察,并在观察基础上进行严格的归纳。当时的植物学仍然以研究分类学的工作为主,而施莱登却开始研究植物的结构和植物的发育了。
1838年,施莱登开始研究细胞的形态及其作用。同年他发表了《植物发生论》一文。在论文中,他提出:无论怎样复杂的植物体,都是由细胞组成的,细胞不仅自己是一种独立的生命,而且作为植物体生命的一部分维持着整个植物体的生命。
在1838年10月的一次聚会上,施莱登把还未公开发表的《植物发生论》中对有关植物细胞结构的情况,以及细胞核在细胞发育中的重要作用等方面的认识告诉了同在缨勒实验室工作的施旺,引起了施旺的兴趣。
施旺于1810年生于莱茵河畔的诺伊斯,父亲是一个金匠。施旺中学毕业后去学医,1834年获得博士学位后,成为著名生理学家缨勒的助手。在缨勒的指导下,他对较多的学术领域产生了兴趣。他曾研究过组织学、生理学、动物学、微生物学,并作出了不少贡献。例如,他曾发现胃蛋白酶;他还发现了神经纤维周围的纤维细鞘,后来该纤维细鞘被称为"施旺神经鞘"。
与施莱登的会面,使施旺猛然想起从前在观察蝌蚪背部的神经索细胞和软骨细胞时,发现它们都具有细胞膜、细胞质和细胞核。这时他便意识到,也许在植物体中起着基本作用的细胞,在动物体内也有着相同的作用。施旺对一些特化的组织,如上皮、蹄、羽毛、肌肉组织、神经组织等进行研究,得到的结论是:无论什么组织,尽管它们在功能上是不同的,但它们都是由细胞发育而来或是细胞分化的产物。
1839年,施旺发表了题为"动、植物结构和生长的相似性的显微研究"的论文,指出一切动、植物组织,无论彼此如何不同,均由细胞组成。他写道:"我们已经推倒了分隔动、植物界的巨大屏障,发现了基本结构的统一性。"他认为,所有的细胞无论是植物细胞还是动物细胞,均由细胞膜、细胞质、细胞核组成。
在1838-1839年,施莱登和施旺分别发表了植物细胞和动物细胞基本认识的专著。他们两人取得完全一致的看法,创立了细胞学说,即一切植物和动物都是由细胞构成的,细胞是生命的结构和功能的基本单位。
细胞学说一经确立,马上显示出其生命力,大大促进了生物学的发展,十几年里迅速被推广,并日臻完善。细胞学说的提出对生物科学的发展具有重大的意义。恩格斯说:"有了这个发现,有机的有生命的自然产物--比较解剖学、生理学和胚胎学才获得了巩固的基础。"细胞学说与达尔文的进化论和孟德尔的遗传学被称为现代生物学的三大基石,而实际上可以说细胞学说又是后两者的"基石"。细胞学说在哲学上也具有重要的意义,它使千变万化的生物界通过具有细胞结构这个共同的标准特征而统一起来。同时有力地证明了生物彼此之间存在着亲缘关系,为生物进化理论奠定了基础。恩格斯认为细胞学说的建立是最令人信服地检验了辩证唯物主义的正确性。他把细胞学说、进化论、能量守恒和转化定律列为19世纪的三大科学发现。
此后,在细胞学说的基础上,人们对生物界进行了更深人的研究,发现了细胞的全能性,即任何细胞都具有发育成完整个体的潜在能力。根据这一理论,人们发展了组织培养、克隆技术等高科技的生物技术。
H. 中国17世纪的科技成就有那些
《天工开物》初刊于1637年(明崇祯十年)。是中国古代一部综合性的科学技术著作,有人也称它是一部网络全书式的著作,作者是明朝科学家宋应星。外国学者称它为“中国17世纪的工艺网络全书”。作者在书中强调人类要和自然相协调、人力要与自然力相配合。
公元1602年
·中国思想家李贽卒
公元1616年 ·中国戏曲作家汤显祖卒。著有《牡丹亭》等传奇 公元1633年
·中国徐光启卒。著有《农政全书》,曾与利玛窦合译欧几里得《几何原本》
公元1636年
·中国皇太极在盛京即帝位,改国号为清(1636~1911) 公元1637年
·中国宋应星著《天工开物》初刊,为总结手工业和农业生产技术巨著 公元1641年
·中国地理学家、旅行家徐霞客(1586~1641)卒。著有《徐霞客游记》
公元1646年
·中国文学家冯梦龙卒。辑有话本《喻世明言》、《警世通言》、《醒世恒言》(见三言)
公元1679年
·中国蒲松龄所著《聊斋志异》约成书于本年前后 公元1682年
·中国思想家顾炎武卒。著有《日知录》、《天下郡国利病书》等 公元1686年
·中国设广州十三行,洋行制度始于此
公元1688年 ·中国戏曲作家洪升撰成传奇《长生殿》
公元1692年
·中国思想家、文学家王夫之卒
公元1694年
·中国思想家、史学家黄宗羲卒。著有《宋元学案》、《明儒学案》、《明夷待访录》等 公元1699年
·中国戏曲作家孔尚任撰成传奇《桃花扇》