导航:首页 > 创造发明 > t检验发明人

t检验发明人

发布时间:2021-08-09 08:10:19

❶ 请问什么是t-test

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。


(1)t检验发明人扩展阅读:

选用的检验方法必须符合其适用条件(注意:t检验的前提:1.来自正态分布总体; 2.随机样本 ;3.均数比较时,要求两样本总体方差相等,即具有方差齐性) 。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。

如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

❷ T检验的条件

T检验的条件:已知一个总体均数;可得到一个样本均数及该样本标准差;样本来自正态或近似正态总体。

T检验的样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。



(2)t检验发明人扩展阅读:

单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。

当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0,有可能犯第Ⅰ类错误。

❸ 什么是T检验(T Test)

什么是T检验 T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈特特于1908年在 Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。 T检验的适用条件:正态分布资料 单个样本的t检验 目的:比较样本均数 所代表的未知总体均数μ和已知总体均数μ0。 计算公式: t统计量: 自由度:v=n - 1 适用条件: (1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本来自正态或近似正态总体。 例1 难产儿出生体重n=35, =3.42, S =0.40, 一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否? 解:1.建立假设、确定检验水准α H0:μ = μ0 (无效假设,null hypothesis) H1: (备择假设,alternative hypothesis,) 双侧检验,检验水准:α=0.05 2.计算检验统计量 ,v=n-1=35-1=34 3.查相应界值表,确定P值,下结论 查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义

❹ t检验的应用条件是什么

应用条件

1、已知一个总体均数;

2、可得到一个样本均数及该样本标准差;

3、样本来自正态或近似正态总体。

注意事项

1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体; 随机样本 ;均数比较时,要求两样本总体方差相等,即具有方差齐性)。

理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。

方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大 。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。

一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。

3、假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0,有可能犯第Ⅰ类错误。

4、正确理解P值与差别有无统计学意义 。P越小,不是说明实际差别越大,而是说越有理由拒绝H0,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。

5、假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。

6、涉及多组间比较时,慎用t检验。科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是t检验的推广。

在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。(进行多次的t检验进行比较设计中不同格子均值时)。

由来

学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。

基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。

戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。

应用

1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。

2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。

3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。

4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。

以上内容参考网络-t检验

❺ 统计学中的独立样本t检验的一个前提是

统计学中的独立样本t检验的一个前提是已知一个总体均数。

t检验适用条件

(1) 已知一个总体均数;

(2) 可得到一个样本均数及该样本标准差;

(3) 样本来自正态或近似正态总体。

(5)t检验发明人扩展阅读

T检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。

理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。

方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

❻ 什么是t检验

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。

T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。

t检验的前提:

1、来自正态分布总体;

2、随机样本 ;

3、均数比较时,要求两样本总体方差相等,即具有方差齐性

(6)t检验发明人扩展阅读

t检验可分为单总体检验和双总体检验,以及配对样本检验

1、单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。

2、双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。

3、配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自常态分配独立样本更改为二群配对样本之观测值之差。

❼ t检验的原理是什么有什么意义谢谢

原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。

意义:

T检验对数据的正态性有一定的耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定的。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。

两个独立样本T检验的原假设为两个总体均值之间不存在显著性差异,需分两步完成:①利用F检验进行两总体方差的同质性判断;②根据方差同质性的判断,决定T统计量和自由度计算公式,进而对T检验的结果给予恰当的判定。

如果待检验的两个样本均值差异较小,那么t值也就较小,说明两样本均值不存在显著差异;相反,t值越大,说明两样本均值之间差异越显著。

SPSS将计算的t值和T分布表给出相应的显著性概率值,如果显著性概率值P小于或等于显著性水平α,则拒绝原假设,认为两总体均值之间存在显著差异;相反,显著性概率值P大于显著性水平α,则不拒绝原假设,认为两总体均值之间不存在显著差异。


(7)t检验发明人扩展阅读

t检验的前提条件:

无论是单样本T检验、独立样本T检验还是配对样本T检验,都有几个基本前提:

一是,T检验属于参数检验,用于检验定量数据(数字有比较意义的),若数据均为定类数据则使用非参数检验。

二是,样本数据需要服从正态或近似正态分布。

1、独立T检验(也称T检验),要求因变量需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是MannWhitney检验进行研究。

2、单样本T检验,其默认前提条件是数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。

3、配对样本T检验,其默认前提条件是差值数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。

其实配对样本T检验与单样本T检验的原理是一模一样,无非是进行了一次数据相减(即差值)处理而已,因而其和单样本T检验保持一致。

❽ t检验中的t值和p值是什么关系

1、t值

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。

T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。

2、P值

P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

(8)t检验发明人扩展阅读

实用举例

1、t检验可用于比较男女身高是否存在差别

为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。

假设

H0:男平均身高 = 女平均身高

H1:男平均身高 ≠ 女平均身高

选用双侧检验:选用α=0.05的统计显著水平

2、P值

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。

如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。

如果P值>0.05,说明结果更倾向于接受假定的参数取值。

❾ t检验的原理是什么有什么意义

原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。

意义:

单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内 。

双样本检验:其零假设为两个正态分布的总体的均值是相同的。这一检验通常被称为学生t检验。但更为严格地说,只有两个总体的方差是相等的情况下,才称为学生t检验;否则,有时被称为Welch检验。

检验同一统计量的两次测量值之间的差异是否为零。举例来说,我们测量一位病人接受治疗前和治疗后的肿瘤尺寸大小。如果治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸变小了。这种检验一般被称作“配对”或者“重复测量”t检验。

检验一条回归线的斜率是否显著不为零。

(9)t检验发明人扩展阅读

假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0,有可能犯第Ⅰ类错误。

正确理解P值与差别有无统计学意义。P越小,不是说明实际差别越大,而是说越有理由拒绝H0,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。

假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。

涉及多组间比较时,慎用t检验。科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是T检验的推广。在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。

❿ 什么是T检验

ɡ鏽<30),总体标准差σ未知的正态分布资料。 T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。 T检验的适用条件:正态分布资料 单个样本的t检验 目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。 计算公式: t统计量: 自由度:v=n -1 适用条件: (1)已知一个总体均数; (2)可得到一个样本均数及该样本标准误; (3)样本来自正态或近似正态总体。

阅读全文

与t检验发明人相关的资料

热点内容
工商登记人员工作总结2018 浏览:799
我要发明机器人300字 浏览:341
转让合作书 浏览:512
上海联瑞知识产权代理有限公司宁波分公司 浏览:364
西安私人二手挖机转让 浏览:698
债务股权转让 浏览:441
食堂转让合同范本 浏览:335
广西华航投资纠纷 浏览:902
萌分期投诉 浏览:832
金软pdf期限破解 浏览:730
马鞍山学化妆 浏览:41
胶州工商局姜志刚 浏览:786
了解到的发明创造的事例 浏览:391
2012年中国知识产权发展状况 浏览:773
合肥徽之皇知识产权代理有限公司 浏览:636
天津企兴知识产权待遇 浏览:31
二项基本公共卫生服务项目试题 浏览:305
基本公共卫生服务考核标准 浏览:543
公共卫生服务考核评估办法 浏览:677
上海工商局咨询热线 浏览:177