① 中國古代數學家成就及其貢獻
早期中國數學和世界其它地方的數學有很大的不同,因此可以合理的認為是獨立發展的。現存最古老的中國數學文獻是《周髀算經》,成書年代有很多說法,從公元前 1200 年到公元前 100 年都有。中國現存最古老的幾何學作品來自《墨經》,由墨子的弟子編撰。《墨經》涉及了很多物理科學的領域,也講解了少量的幾何定理。
《九章算術》為現存最古老的中國數學著作之一。該書完整的標題首次出現在公元 179 年,但在這之前也有文獻提到過該書的部分。《九章算術》包括了 246 個應用題,包含了農業、商業、求塔的高度、工程學和測繪學。它還證明了勾股定理,以及高斯消元的公式。勾股定理即為西方的畢達哥拉斯定理,描述了直角三角形中三條邊長度的關系。
三國時代數學家劉徽的割圓術是中國古代數學中一個重要的成就。劉徽是中國數學史上最早創造出一個從數學上計算圓周率到任意精確度的迭代程序。他自己通過分割圓為 192 邊形,計算出圓周率在 3.14 與 3.142704 之間。後來劉徽發明一種快捷演算法,可以只用 96 邊形得到和 1536 邊形同等的精確度,得到圓周率近似為 3.1416。因為劉徽割圓術簡單而又嚴謹,富於程序性,可以繼續分割下去,而求得更精確的圓周率。南北朝時期著名數學家祖沖之用劉徽割圓術計算 11 次,分割圓為 12288 邊形,得圓周率 3.1415926,成為此後千年世界上最准確的圓周率。劉徽割圓術雖然不是世界最早,卻是數學史上最嚴謹簡潔的割圓術。比阿基米德割圓術更簡潔,比托勒密 (Claudius Ptolemaeus) 割圓術更嚴謹。
中國數學的最高峰出現在 13 世紀宋朝,此時代數學得到了極大的發展。其中最重要的著作是朱世傑的《四元玉鑒》。書中記載了研究一元高次方程組的解的方法,後稱為秦九韶演算法,即後世歐洲的霍納演算法 (Horner's method)。前蘇聯數學史家尤什克維奇說 「這是中國傳統數學最偉大成就之一」。
中國古代數學被世界所公認的最卓越發現是孫子定理,在全世界的代數學教科書中亦稱為中國剩餘定理 (Chinese remainder theorem)。中國南北朝時期 (公元5世紀) 的數學著作《孫子算經》卷下第二十六題,叫做 「物不知數」 問題,原文如下:
有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二。問物幾何?
即:一個整數除以三餘二,除以五餘三,除以七餘二,求這個整數。《孫子算經》中首次提到了這種一元線性同餘方程組的問題,以及以上具體問題的解法。而這種同餘問題直到 1801 年才被偉大的天才德國數學家高斯在其名著 《算術研究》中研究並用來計算復活節的日期。
② 中國古代偉大數學家及數學發明
中國古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作。許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來。這些中國古代數學名著是了解古代數學成就的豐富寶庫。
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書·藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」(也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。
《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。
《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書·律歷志》中(參見本書第101頁)。
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。
中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系。在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展。宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁。
特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家。所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:
秦九韶著的《數書九章》(公元1247年);
李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);
楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年),
朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年)。
《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁)。書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多。《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學。楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法。這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件。朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容。《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁)。
宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年。
宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的。
宋元以後,明清時期也有很多算書。例如明代就有著名的算書《演算法統宗》。這是一部風行一時的講珠算盤的書。入清之後,雖然也有不少算書,但是像《算經十書》、宋元算書所包含的那樣重大的成就便不多見了。特別是在明末清初以後的許多算書中,有 不少是介紹西方數學的。這反映了在西方資本主義發展進入近代科學時期以後我國科學技術逐漸落後的情況,同時也反映了中國數學逐漸融合到世界數學發展總的潮流中去的一個過程。
中國數學發展的歷史表明:中國數學曾經為世界數學的發展作出過卓越的貢獻,只是在近代才逐漸落後了。我們深信,經過努力,中國數學一定能迎頭趕上世界
③ 中國古代數學對世界的貢獻
中國是算盤之鄉,珠算最早產生於中國為世界聞名作出了重要貢獻!
《九章算術》是世界上最早的系統敘述了分數運算的著作,也是世界數學史上最早提出負數概念及正負數加減法法則!
中國古代數學對世界文化的重大貢獻首推「十進位值制計數法」
祖沖之圓周率的推算等等
④ 中國古代有哪些數學貢獻
400字根本說不完,我刪了又刪還剩這么多,不好意思了。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。 趙爽在《勾股圓方圖注》中,用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。
南北朝祖沖之、祖暅父子取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑著《四元玉鑒》,把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
⑤ 中國古代在數的發展方面的貢獻
負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。
在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。
在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。
從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。
圓周率的計算
圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。
我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。
回答者:taujion - 高級經理 七級 9-5 09:02
我也來回答:
回答即可得2分,回答被採納則獲得懸賞分以及獎勵20分。 積分規則
回答字數在10000字以內
參考資料:
如果您的回答是從其他地方引用,請表明出處。
匿名回答
⑥ 中國古代數學對世界的影響是什麼
中國古代的數學比其他西方國家起碼要領先了1000多年,中國數學的誕生,促進了我國的建築業,製造業,科學技術的蓬勃發展,希望可以幫到你
⑦ 中國數學的最大貢獻
古代:
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。 趙爽在《勾股圓方圖注》中,用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。
南北朝祖沖之、祖暅父子取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑著《四元玉鑒》,把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
現代:
1.國際著名數學大師,沃爾夫數學獎得主,陳省身
1931年入清華大學研究院,1934軍獲碩士學位.1934年去漢堡大學從Blaschke學習.1937年回國任西南聯合大學教授.1943年到1945年任普林斯頓高等研究所研究員.1949年初赴美,旋任芝加哥大學教授.1960年到加州大學伯克利分校任教授,1979年退休成為名譽教授,仍繼續任教到1984年.1981年到1984年任新建的伯克利數學研究所所長,其後任名譽所長。陳省身的主要工作領域是微分幾何學及其相關分支.還在積分幾何,射影微分幾何,極小子流形,網幾何學,全曲率與各種浸入理論,外微分形式與偏微分方程等諸多領域有開拓性的貢獻.陳省身本有極多榮譽,包括中央研究院院士(1948).美國國家科學院院士(1961)及國家科學獎章(1975),倫敦皇家學會國外會員(1985),法國科學院國外院士』(1989),中國科學院國外院士等。榮獲1983/1984年度Wolf獎,及1983年度美國科學會Steele獎中的終身成就獎.
2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人,華羅庚
華羅庚是一位人生經歷傳奇的數學家,早年輟學,1930年因在《科學》上發表了關於代數方程式解法的文章,受到熊慶來的重視,被邀到清華大學學習和工作,在楊武之指引下,開始了數論的研究。1936年,作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應美國普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年開始,他為伊利諾伊大學教授。1950年回國,先後任清華大學教授,中國科學院數學研究所所長,數理化學部委員和學部副主任,中國科學技術大學數學系主任、副校長,中國科學院應用數學研究所所長,中國科學院副院長、主席團委員等職。還擔任過多屆中國數學會理事長。此外,華羅庚還是第一、二、三、四、五屆全國人民代表大會常務委員會委員和中國人民政治協商會議第六屆全國委員會副主席。華羅庚是在國際上享有盛譽的數學家,他的名字在美國施密斯松尼博物館與芝加哥科技博物館等著名博物館中,與少數經典數學家列在一起。他被選為美國科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。又被授予法國南錫大學、香港中文大學與美國伊利諾伊大學榮譽博士。華羅庚在解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等廣泛數學領域中都作出卓越貢獻。由於華羅庚的重大貢獻,有許多用他他的名字命名的定理、引理、不等式、運算元與方法。他共發表專著與學術論文近三百篇。華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。
3.僅次於哥德爾的邏輯數學大師,王浩
1943年於西南聯合大學數學系畢業。1945年於清華大學研究生院哲學部畢業。1948年獲美國哈佛大學哲學博士學位。1950~1951年在瑞士聯邦工學院數學研究所從事研究工作1951~1953年任哈佛大學助理教授。1954~1961年在英國牛津大學作第二套洛克講座講演,又任邏輯及數理哲學高級教職。1961~1967 年任哈佛大學教授。1967年後任美國洛克斐勒大學教授,主持邏輯研究室工作。1985年兼任中國北京大學名譽教授。1986年兼任中國清華大學名譽教授。50年代 初被選為美國國家科學院院士,後又被選為不列顛科學院外國院士,美籍華裔數學家、邏輯學家、計算機科學家、哲學家。
4.著名數學家力學家,美國科學院院士,林家翹
1937年畢業於清華大學物理系。1941年獲加拿大多倫多大學碩士學位。1944年獲美國加州理工學院博士學位。1953 年起先後擔任美國麻省理工學院數學教授、學院教授、榮譽退休教授。 林家翹教授曾獲:美國機械工程師學會Timoshenko獎,美國國家科學院應用數學和數值分析獎,美國物理學會流體力學獎。他是美國國家文理學院院士(1951),美國國家科學院院士(1962),台灣「中央研究院」院士(1960)。從40年代開始,林家翹教授在流體力學的流動穩定性和湍流理論方面的工作帶動了整整一代人在這一領域的研究探索。從60年代開始,他進入天體物理的研究領域,開創了星系螺旋結構的密度波理論,並為國際所公認。1994年6月8日當選為首批中國科學院外籍士。
5.我國泛函分析領域研究先驅者,曾遠榮
1919年入清華學校(清華大學前身)留美預備部,一直讀到1927年7月。由於學習成績優異,先後在美國芝加哥大學,普林斯頓大學及耶魯大學學習並研究數學,1933年取得博士學位。1934年8月至1942年7月一直任教於清華大學(1938年與北京大學、南開大學在昆明組成西南聯合大學)。1950年2月,受國立南京大學數學系系主任孫光遠教授寫信聘請到南京大學任教直至退休,曾在南京大學建立國內最早的計算數學專業。長期從事泛函分析研究,是我國開展這一領域研究的先驅者之一,在廣義逆等研究領域成就卓著。
6.我國最早提倡應用數學與計算數學的學者,趙訪熊
1922年考取北京清華學校。當時清華學校是公費留美預備學校,競爭激烈,在江蘇只招3名學生,他在眾多考生中名列榜首。畢業後即到美國麻省理工學院(MIT)電機系學習。他1930年在電機系畢業,被哈佛大學數學系錄取為研究生,且於1931年獲碩士學位。1933年他受聘回國在清華大學數學系任教,1935年被聘為教授,從此一直在清華大學任教,參與創辦國內第一個計算數學專業。趙訪熊於1962年和1978年先後兩次出任清華大學副校長,1980-1984年兼任新成立的應用數學系主任,並受聘擔任國務院學位委員會學科評議組委員。他擔任過中國數學會理事、名譽理事。1978年至1989年擔任第一、二屆計算數學學會理事長及第三屆名譽理事長和《計算數學學報》主編等一系列職務。數學家,數學教育家。我國最早提倡和從事應用數學與計算數學的教學與研究的學者之一。自編我國第一部工科《高等微積分》教材。在方程求根及應用數學研究方面頗有建樹。
7.著名數學家,數學教育家,吳大任
1930年與陳省身以最優等成績在南開大學畢業,考取清華大學研究生,1933年夏,在姜立夫的鼓勵下,吳大任參加了中英庚款第一屆公費留學考試,被錄取到英國學習。他本想到劍橋大學攻讀,因抵倫敦時間錯過了該校入學的時機,改入倫敦大學的大學學院,注冊為博士研究生。1937年9月初,吳大任到武漢大學任教,之後即隨武漢大學遷到四川樂山。後來長期擔任南開大學領導工作與教學工作,著、譯數學教材及名著多種。對我國高等教育事業作出了積極貢獻。研究領域涉及積分幾何、非歐幾何、微分幾何及其應用(齒輪理論)。1981年他任國家學位委員會第一屆數學組成員,《中國大網路全書數學卷》編委兼幾何拓撲學科的副主編以及全國自然科學名詞審定委員會第一和第二屆委員。
8.著名數學家,北大教授,庄圻泰
1927年考入清華學校,1932年畢業於清華大學數學系,1934年,熊慶來教授接受庄圻泰為自己的研究生,1936年於該校理科研究所畢業。1938年獲法國巴黎大學數學博士學位。曾任雲南大學教授。1952年院系調整後,庄圻泰留任北京大學。此後除繼續擔任復變函數課程的教學任務外,他還陸續講過保角變換,擬保角變換,整函數與亞純函數等專業課。九三學社社員。長期從事函數論研究,在整函數與亞純函數的值分布理論上取得重要成果。著有《亞純函數的奇異方向》,合編《AnalyticFunctionsOfOneCom·plexVariable》(在美國出版)
9.著名數學家,數學教育家,四川大學校長,柯召
1931年,入清華大學算學系。1933年,柯召以優異成績畢業。1935年,他考上了中英庚款的公費留學生,去英國曼徹斯特大學深造,在導師L.J.莫德爾(Mordell)的指導下研究二次型,在表二次型為線性型平方和的問題上,取得優異成績,回國後先後任教於重慶大學,四川大學。1953年,他調回四川大學任教至今。在這40餘年間,他以滿腔的熱情投入教學和科研工作,為國家培養了許多優秀數學人材,在科研上碩果累累。與此同時,他還先後擔任了四川大學教務長、副校長、校長、數學研究所所長等職,作為學術帶頭人和學校負責人,他卓有成效地抓了幾個重要方面的工作:努力提高教學質量,積極開展基礎理論研究,發展應用數學,培養一批高水平的人材。其研究領域涉及數論、組合數學與代數學。在二次型、不定方程領域獲眾多優秀成果。1955年選聘為中國科學院院士(學部委員)。
10.中央研究院院士,首批學部委員,許寶騄
1929年入清華大學數學系,1933年畢業獲理學士學位,1936年許寶騄考取赴英留學,派往倫敦大學學院,在統計系學習數理統計,攻讀博士學位。1940年到昆明,在西南聯合大學任教。1948年他當選為中央研究院院士。回國後不久就發現已患肺結核。他長期帶病工作,教學科研一直未斷,在矩陣論,概率論和數理統計方面發表了10餘篇論文。1955年,他當選為中國科學院學部委員。在中國開創了概率論、數理統計的教學與研究工作。在內曼-皮爾遜理論、參數估計理論、多元分析、極限理論等方面取得卓越成就,是多元統計分析學科的開拓者之一。1955年選聘為中國科學院院士(學部委員)。
11.中科院院士,原北大數學系主任,段學復
1932年考入了清華大學數學系(當時稱為「算學系」)。 1936年夏,段學復獲得理學士學位,畢業留校任助教。1941年8月進入美國普林斯頓大學數學系攻讀博士學位。1946年回國任清華大學教授,自1952年院系調整後,任北京大學數學系系主任近40年。長期從事代數學的研究。在有限群的模表示論特別是指標塊及其在有限單群和有限復線性群構造研究中的應用方面取得突出成果。指導學生用表示論和有限單群分類定理徹底解決了著名的Brauer第39問題、第40問題。在代數李群研究方面與國外學者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在數學應用於國防科研和國防建設方面作了大量工作。1955年選聘為中國科學院院士(學部委員)。
12.我國拓撲學的奠基人 江澤涵
畢業於南開大學,1927年參加清華大學留美專科生的考試,考取了那年唯一的學數學的名額,後在美國哈佛大學數學系留學,1930年獲得博士學位。1930在美國普林斯頓大學數學系做研究助教。1931年起,長期擔任任北京大學數學系教授,並任北京大學數學系主任,曾兼任理學院代理院長。數學家,數學教育家。早年長期擔任北京大學數學系主任,為該系樹立了優良的教學風尚。致力於拓撲學,特別是不動點理論的研究,是我國拓撲學研究的開拓者之一。1955年當選為中國科學院數理學部委員。
⑧ 中國古代有哪些數學成就是領先於當時世界其他地區且對世界數學史上有傑出貢獻的
中國古代在數學方面的傑出成就主要有:勾股定理、楊輝三角、圓周率,還有算盤
⑨ 中國人對世界數學的貢獻有哪些
祖沖之在數學史上首次將圓周率(Л)值計算到小數點後七位,即3.1415926到3.1415927之間.他提出約率22/7和密率355/113,這一密率值是世界上最早提出的,比歐洲早一千多年,所以有人主張叫它「祖率」.他將自己的數學研究成果匯集成一部著作,名為《綴術》,唐朝國學曾經將此書定為數學課本.
中國古代北宋時期傑出的數學家賈憲曾撰寫《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法.目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年.
劉 徽是中國數學史上一個非常偉大的數學家,在世界數學史上也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
楊輝研究「垛積術」,即關於高階等差數列的研究.他首次將所謂「幻方」問題作為數學問題研究,並創「縱橫圖」之名.他給出了三階至十階幻方的實例,對某些構成原理也有所研究.
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義.
秦九韶是南宋時期傑出的數學家.1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程).16世紀義大利人菲爾洛才提出三次方程的解法.
⑩ 數學家有哪些發明了什麼對世界有多大成就
1、牛頓:微積分的創建、萬有引力。2、歐拉:無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為「分析學的化身」。另外,歐拉還創設了許多數學符號,一直使用至今,如π,i,e,sin,cos,tg,Δx,Σ,f(x)等。而哥德巴赫猜想也是在他與哥德巴赫的通信中首先提出來的。歐拉還首先完成了月球繞地球運動的精確理論,創立了分析力學、剛體力學等力學學科,深化瞭望遠鏡、顯微鏡的設計計算理論等等。4、伽羅瓦:首次引入了「群」的概念,(寄給大數學家柯西審閱,可惜柯西輕視該文,未認真審閱,致使該理論推遲了50年)18歲時,再次寄出,這次寄給大數學家傅立葉,可惜傅立葉病死,未能審閱。19歲時,第三次寄出,這次寄給了大數學家泊松,但是泊松最終給的批語是「完全無法理解」。這些失誤致使「群倫」這一數學最重要的分支遲到了50年的時間。5、亨利·龐加萊,龐加萊一生發表的科學論文約500篇、科學著作約30部,幾乎涉及到數學的所有領域以及理論物理、天體物理等的許多重要領域。6、希爾伯特。希爾伯特的研究涉及現代數學的許多領域,如不變數理論、代數數論、幾何基礎、積分方程和物理學的公理化、數學基礎和數理邏輯等。希爾伯特是對二十世紀數學有深刻影響的數學家之一,對他提出的23個問題,似乎至今仍在促進現代數學的研究和發展。大數學家韋爾(H.Weyl)在希爾伯特去世時的悼詞中曾說:「希爾伯特就像穿雜色衣服的風笛手,他那甜蜜的笛聲誘惑了如此眾多的老鼠,跟著他跳進了數學的深河。」7、陳省身:陳省身開創並領導著整體微分幾何、纖維叢微分幾何、「陳省身示性類」等領域的研究,他是有史以來唯一獲得世界數學界最高榮譽「沃爾夫獎」的華人,被稱為「當今最偉大的數學家」,被國際數學界尊為「微分幾何之父」。
國際著名數學大師,沃爾夫數學獎得主,陳省身
1931年入清華大學研究院,1934軍獲碩士學位.1934年去漢堡大學從Blaschke學習.1937年回國任西南聯合大學教授.1943年到1945年任普林斯頓高等研究所研究員.1949年初赴美,旋任芝加哥大學教授.1960年到加州大學伯克利分校任教授,1979年退休成為名譽教授,仍繼續任教到1984年.1981年到1984年任新建的伯克利數學研究所所長,其後任名譽所長。陳省身的主要工作領域是微分幾何學及其相關分支.還在積分幾何,射影微分幾何,極小子流形,網幾何學,全曲率與各種浸入理論,外微分形式與偏微分方程等諸多領域有開拓性的貢獻.陳省身本有極多榮譽,包括中央研究院院士(1948).美國國家科學院院士(1961)及國家科學獎章(1975),倫敦皇家學會國外會員(1985),法國科學院國外院士』(1989),中國科學院國外院士等。榮獲1983/1984年度Wolf獎,及1983年度美國科學會Steele獎中的終身成就獎.
2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人 華羅庚
華羅庚是一位人生經歷傳奇的數學家,早年輟學,1930年因在《科學》上發表了關於代數方程式解法的文章,受到熊慶來的重視,被邀到清華大學學習和工作,在楊武之指引下,開始了數論的研究。1936年,作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應美國普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年開始,他為伊大學教授。1950年回國,先後任清華大學教授,中國科學院數學研究所所長,數理化學部委員和學部副主任,中國科學技術大學數學系主任、副校長,中國科學院應用數學研究所所長,中國科學院副院長、主席團委員等職。還擔任過多屆中國數學會理事長。此外,華羅庚還是第一、二、三、四、五屆全國人民代表大會常務委員會委員和中國人民政治協商會議第六屆全國委員會副主席。華羅庚是在國際上享有盛譽的數學家,他的名字在美國施密斯松尼博物館與芝加哥科技博物館等著名博物館中,與少數經典數學家列在一起。他被選為美國科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。又被授予法國南錫大學、香港中文大學與美國伊利諾伊大學榮譽博士。華羅庚在解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等廣泛數學領域中都作出卓越貢獻。由於華羅庚的重大貢獻,有許多用他他的名字命名的定理、引理、不等式、運算元與方法。他共發表專著與學術論文近三百篇。華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。
3.僅次於哥德爾的邏輯數學大師,王浩
1943年於西南聯合大學數學系畢業。1945年於清華大學研究生院哲學部畢業。1948年獲美國哈佛大學哲學博士學位。1950~1951年在瑞士聯邦工學院數學研究所從事研究工作1951~1953年任哈佛大學助理教授。1954~1961年在英國牛津大學作第二套洛克講座講演,又任邏輯及數理哲學高級教職。1961~1967 年任哈佛大學教授。1967年後任美國洛克斐勒大學教授,主持邏輯研究室工作。1985年兼任中國北京大學名譽教授。1986年兼任中國清華大學名譽教授。50年代 初被選為美國國家科學院院士,後又被選為不列顛科學院外國院士,美籍華裔數學家、邏輯學家、計算機科學家、哲學家。
4.著名數學家力學家,美國科學院院士,林家翹
1937年畢業於清華大學物理系。1941年獲加拿大多倫多大學碩士學位。1944年獲美國加州理工學院博士學位。1953 年起先後擔任美國麻省理工學院數學教授、學院教授、榮譽退休教授。 林家翹教授曾獲:美國機械工程師學會Timoshenko獎,美國國家科學院應用數學和數值分析獎,美國物理學會流體力學獎。他是美國國家文理學院院士(1951),美國國家科學院院士(1962),台灣「中央研究院」院士(1960)。從40年代開始,林家翹教授在流體力學的流動穩定性和湍流理論方面的工作帶動了整整一代人在這一領域的研究探索。從60年代開始,他進入天體物理的研究領域,開創了星系螺旋結構的密度波理論,並為國際所公認。1994年6月8日當選為首批中國科學院外籍士。
1.費爾馬大定理,起源於三百多年前,挑戰人類3個世紀,多次震驚全世界,耗盡人類眾多最傑出大腦的精力,也讓千千萬萬業余者痴迷。終於在1994年被安德魯·懷爾斯攻克。古希臘的丟番圖寫過一本著名的「算術」,經歷中世紀的愚昧黑暗到文藝復興的時候,「算術」的殘本重新被發現研究。
1637年,法國業余大數學家費爾馬(Pierre de Fremat)在「算術」的關於勾股數問題的頁邊上,寫下猜想:x^n+ y^n =z^n 是不可能的(這里n大於2;a,b,c,n都是非零整數)。此猜想後來就稱為費爾馬大定理。費爾馬還寫道「我對此有絕妙的證明,但此頁邊太窄寫不下」。一般公認,他當時不可能有正確的證明。猜想提出後,經歐拉等數代天才努力,200年間只解決了n=3,4,5,7四種情形。1847年,庫木爾創立「代數數論」這一現代重要學科,對許多n(例如100以內)證明了費爾馬大定理,是一次大飛躍。
歷史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最後時刻挽救自殺青年於不死。他就是德國的沃爾夫斯克勒,他後來為費爾馬大定理設懸賞10萬馬克(相當於現在160萬美元多),期限1908-2007年。無數人耗盡心力,空留浩嘆。最現代的電腦加數學技巧,驗證了400萬以內的N,但這對最終證明無濟於事。1983年德國的法爾廷斯證明了:對任一固定的n,最多隻有有限多個a,b,c振動了世界,獲得費爾茲獎(數學界最高獎)。
歷史的新轉機發生在1986年夏,貝克萊·瑞波特證明了:費爾馬大定理包含在「谷山豐—志村五朗猜想 」 之中。童年就痴迷於此的懷爾斯,聞此立刻潛心於頂樓書房7年,曲折卓絕,匯集了20世紀數論所有的突破性成果。終於在1993年6月23日劍橋大學牛頓研究所的「世紀演講」最後,宣布證明了費爾馬大定理。立刻震動世界,普天同慶。不幸的是,數月後逐漸發現此證明有漏洞,一時更成世界焦點。這個證明體系是千萬個深奧數學推理連接成千個最現代的定理、事實和計算所組成的千百回轉的邏輯網路,任何一環節的問題都會導致前功盡棄。懷爾斯絕境搏鬥,毫無出路。1994年9月19日,星期一的早晨,懷爾斯在思維的閃電中突然找到了迷失的鑰匙:解答原來就在廢墟中!他熱淚奪眶而出。懷爾斯的歷史性長文「模橢圓曲線和費爾馬大定理」1995年5月發表在美國《數學年刊》第142卷,實際占滿了全卷,共五章,130頁。1997年6月27日,懷爾斯獲得沃爾夫斯克勒10萬馬克懸賞大獎。離截止期10年,圓了歷史的夢。他還獲得沃爾夫獎(1996.3),美國國家科學家院獎(1996.6),費爾茲特別獎(1998.8)。
2.四色問題的內容是:「任何一張地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。」用數學語言表示,即「將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。」(右圖)
這里所指的相鄰區域,是指有一整段邊界是公共的。如果兩個區域只相遇於一點或有限多點,就不叫相鄰的。因為用相同的顏色給它們著色不會引起混淆。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯·格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」這個現象能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。
1852年10月23日,他的弟弟就這個問題的證明請教了他的老師、著名數學家德·摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家漢密爾頓爵士請教。漢密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年漢密爾頓逝世為止,問題也沒有能夠解決。
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了。
肯普的證明是這樣的:首先指出如果沒有一個國家包圍其他國家,或沒有三個以上的國家相遇於一點,這種地圖就說是「正規的」(左圖)。如為正規地圖,否則為非正規地圖(右圖)。一張地圖往往是由正規地圖和非正規地圖聯系在一起,但非正規地圖所需顏色種數一般不超過正規地圖所需的顏色,如果有一張需要五種顏色的地圖,那就是指它的正規地圖是五色的,要證明四色猜想成立,只要證明不存在一張正規五色地圖就足夠了。
肯普是用歸謬法來證明的,大意是如果有一張正規的五色地圖,就會存在一張國數最少的「極小正規五色地圖」,如果極小正規五色地圖中有一個國家的鄰國數少於六個,就會存在一張國數較少的正規地圖仍為五色的,這樣一來就不會有極小五色地圖的國數,也就不存在正規五色地圖了。這樣肯普就認為他已經證明了「四色問題」,但是後來人們發現他錯了。
不過肯普的證明闡明了兩個重要的概念,對以後問題的解決提供了途徑。第一個概念是「構形」。他證明了在每一張正規地圖中至少有一國具有兩個、三個、四個或五個鄰國,不存在每個國家都有六個或更多個鄰國的正規地圖,也就是說,由兩個鄰國,三個鄰國、四個或五個鄰國組成的一組「構形」是不可避免的,每張地圖至少含有這四種構形中的一個。
肯普提出的另一個概念是「可約」性。「可約」這個詞的使用是來自肯普的論證。他證明了只要五色地圖中有一國具有四個鄰國,就會有國數減少的五色地圖。自從引入「構形」,「可約」概念後,逐步發展了檢查構形以決定是否可約的一些標准方法,能夠尋求可約構形的不可避免組,是證明「四色問題」的重要依據。但要證明大的構形可約,需要檢查大量的細節,這是相當復雜的。
11年後,即1890年,在牛津大學就讀的年僅29歲的赫伍德以自己的精確計算指出了肯普在證明上的漏洞。他指出肯普說沒有極小五色地圖能有一國具有五個鄰國的理由有破綻。不久,泰勒的證明也被人們否定了。人們發現他們實際上證明了一個較弱的命題——五色定理。就是說對地圖著色,用五種顏色就夠了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,美國著名數學家、哈佛大學的伯克霍夫利用肯普的想法,結合自己新的設想;證明了某些大的構形可約。後來美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。
高速數字計算機的發明,促使更多數學家對「四色問題」的研究。從1936年就開始研究四色猜想的海克,公開宣稱四色猜想可用尋找可約圖形的不可避免組來證明。他的學生丟雷寫了一個計算程序,海克不僅能用這程序產生的數據來證明構形可約,而且描繪可約構形的方法是從改造地圖成為數學上稱為「對偶」形著手。
他把每個國家的首都標出來,然後把相鄰國家的首都用一條越過邊界的鐵路連接起來,除首都(稱為頂點)及鐵路(稱為弧或邊)外,擦掉其他所有的線,剩下的稱為原圖的對偶圖。到了六十年代後期,海克引進一個類似於在電網路中移動電荷的方法來求構形的不可避免組。在海克的研究中第一次以頗不成熟的形式出現的「放電法」,這對以後關於不可避免組的研究是個關鍵,也是證明四色定理的中心要素。
電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。美國伊利諾大學哈肯在1970年著手改進「放電過程」,後與阿佩爾合作編制一個很好的程序。就在1976年6月,他們在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明,轟動了世界。
這是一百多年來吸引許多數學家與數學愛好者的大事,當兩位數學家將他們的研究成果發表的時候,當地的郵局在當天發出的所有郵件上都加蓋了「四色足夠」的特製郵戳,以慶祝這一難題獲得解決。
「四色問題」的被證明僅解決了一個歷時100多年的難題,而且成為數學史上一系列新思維的起點。在「四色問題」的研究過程中,不少新的數學理論隨之產生,也發展了很多數學計算技巧。如將地圖的著色問題化為圖論問題,豐富了圖論的內容。不僅如此,「四色問題」在有效地設計航空班機日程表,設計計算機的編碼程序上都起到了推動作用。
不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。直到現在,仍由不少數學家和數學愛好者在尋找更簡潔的證明方法。
3.史上和質數有關的數學猜想中,最著名的當然就是「哥德巴赫猜想」了。
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了兩個大膽的猜想:
一、任何不小於6的偶數,都是兩個奇質數之和;
二、任何不小於9的奇數,都是三個奇質數之和。
這就是數學史上著名的「哥德巴赫猜想」。顯然,第二個猜想是第一個猜想的推論。因此,只需在兩個猜想中證明一個就足夠了。
同年6月30日,歐拉在給哥德巴赫的回信中, 明確表示他深信哥德巴赫的這兩個猜想都是正確的定理,但是歐拉當時還無法給出證明。由於歐拉是當時歐洲最偉大的數學家,他對哥德巴赫猜想的信心,影響到了整個歐洲乃至世界數學界。從那以後,許多數學家都躍躍欲試,甚至一生都致力於證明哥德巴赫猜想。可是直到19世紀末,哥德巴赫猜想的證明也沒有任何進展。證明哥德巴赫猜想的難度,遠遠超出了人們的想像。有的數學家把哥德巴赫猜想比喻為「數學王冠上的明珠」。
我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一驗證了3300萬以內的所有偶數,竟然沒有一個不符合哥德巴赫猜想的。20世紀,隨著計算機技術的發展,數學家們發現哥德巴赫猜想對於更大的數依然成立。可是自然數是無限的,誰知道會不會在某一個足夠大的偶數上,突然出現哥德巴赫猜想的反例呢?於是人們逐步改變了探究問題的方式。
1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把「哥德巴赫猜想」列為23個數學難題之一。此後,20世紀的數學家們在世界范圍內「聯手」進攻「哥德巴赫猜想」堡壘,終於取得了輝煌的成果。
20世紀的數學家們研究哥德巴赫猜想所採用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像「縮小包圍圈」一樣,逐步逼近最後的結果。
1920年,挪威數學家布朗證明了定理「9+9」,由此劃定了進攻「哥德巴赫猜想」的「大包圍圈」。這個「9+9」是怎麼回事呢?所謂「9+9」,翻譯成數學語言就是:「任何一個足夠大的偶數,都可以表示成其它兩個數之和,而這兩個數中的每個數,都是9個奇質數之積。」 從這個「9+9」開始,全世界的數學家集中力量「縮小包圍圈」,當然最後的目標就是「1+1」了。
1924年,德國數學家雷德馬赫證明了定理「7+7」。很快,「6+6」、「5+5」、「4+4」和「3+3」逐一被攻陷。1957年,我國數學家王元證明了「2+3」。1962年,中國數學家潘承洞證明了「1+5」,同年又和王元合作證明了「1+4」。1965年,蘇聯數學家證明了「1+3」。
1966年,我國著名數學家陳景潤攻克了「1+2」,也就是:「任何一個足夠大的偶數,都可以表示成兩個數之和,而這兩個數中的一個就是奇質數,另一個則是兩個奇質數的積。」這個定理被世界數學界稱為「陳氏定理」。
由於陳景潤的貢獻,人類距離哥德巴赫猜想的最後結果「1+1」僅有一步之遙了。但為了實現這最後的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明「1+1」,必須通過創造新的數學方法,以往的路很可能都是走不通的。