① 通過經緯度計算距離的公式是誰發明的或者有沒有權威書籍和論文
OK ,需要的話,我可以幫忙。
② 三角函數誰發明的
歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用. (一) 馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽. 自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源. (二) 早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義. 1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx. 當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」. 18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延. (三) 函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究. 後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」 在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由 表示出,其中 富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙. 通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義. 1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分. 1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」 根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數): f(x)= 1 (x為有理數), 0 (x為無理數). 在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數. 狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義. (四) 生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是 P(0)=壓力/接觸面=1/0=∞. 其餘點x≠0處,因無壓力,故無壓強,即 P(x)=0.另外,我們知道壓強函數的積分等於壓力,即 函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元. 函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系. 函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」. 設集合X、Y,我們定義X與Y的積集X×Y為 X×Y={(x,y)|x∈X,y∈Y}. 積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系. 現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了. 從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.
③ 請問數字以及數學的運演算法則是被人們發現的還是發明的
這問題貌似哲理性。地理學家發現未知地域,生物學家尋找新物種,化學家發現新化合物。數學家則是在幾何圖形和數字中發現新物體以及它們的特徵。不過呢,數學上的物體有些特別:我們不能把它們送到博物館或者動物園展覽。它們其實是抽象的物體,是我們想像和思維的產物。有點像柏拉圖式的觀點。對於古典時代的哲學家柏拉圖而言,數學極其重要。因為數學為他「所有可感知物背後都存在一個理想原型」這一觀點提供了有力的支持。以下在數學上是不言而喻的:不管我們在沙地上,紙張上畫圈圈還是在電腦屏幕前觀察它,數學觀點中關注的始終是哪個「理想」的圓,而不是沙地上的犁溝,紙張上的石墨或者屏幕上的像素點。不過呢,柏拉圖信念的關鍵在於,理想物體是現實物體的最高階段。在柏拉圖看來,所有可感知的物體,也就是所有我們看到的,聽到的,觸及到的,聞到或是嘗到的東西,都只不過是相應理想物體的單調影射而已。柏拉圖主義者確信數學特徵是被發現的,因為理想物體早已存在於柏拉圖理想的天空中。現代數學的觀點與之恰好相反。以其形式的觀點看來,數學只是游戲而已。這不代表允許做一切事或者什麼都不重要。恰恰相反:游戲除了游戲規則之外就什麼也沒有了!玩家只能按游戲規則行事。數學中,公理就是游戲規則,闡述的是基本概念的使用方法。在游戲規則之外沒有更高的,隱藏的實在。數學教科書的結構就是這樣的。一句話,數學是人類創造的游戲,是被發明出來的。這就像國際象棋的規則只規定如何走子,卻既不說明「帥」是「什麼」,也不解釋走子的「意義」。現代數學只關心公理和邏輯法則,且遵守游戲規則。認為幾乎能在物質上感知到這些東西。不管是在探索質數組無限性的證明還是在研究集合體系是否比實數體系范圍更廣,抑或是在確定五維空間中直線的特殊坐標時,現代數學家始終能感知到他們的研究對象或者乾脆深信不疑。因為,在他們看來,摒除眾多數學家的信念因素,柏拉圖主義是站不住腳步的。數學家P。J戴維斯恰如其分地描述了這種情景:典型的數學家在工作日是柏拉圖主義者,在休息日又是形式主義者。
④ 數學運算符號的來歷是什麼
1、「+」號,是15世紀德國數學家魏德美創造的。在橫線上加上一豎,表示增加。
2、「-」號,也是魏德美創造的。從加號中減去一豎,表示減少。
3、「×」號,是18世紀美國數學家歐德萊最先使用的。它表示增加的另一種方式,所以把加號斜過來寫。
4、「÷」號,是18世紀瑞士人哈納創造的。它表示分解的意思,用一條橫線把兩個圓點分開。
5、「=」號,是16世紀英國學者列科爾德發明的。
(4)速度的運算公式是誰發明的擴展閱讀
數學符號化讓人們以約定的、規范的形式來表達數學思想。它以濃縮的形式表達信息,從而加快了數學思維的速度,推動了數學的發展。要做好常用數學符號的教學,須做好以下方面的工作。
1、正確使用數學符號的關鍵是要讓學生理解數學符號的含義及實質。教學概念本身是抽象的,而數學符號往往又是數學概念的代表。因此,要弄清楚每個教學符號的含義及實質。
嚴格遵守數學符號的書寫規則,以期養成一絲不苟的良好習慣;一個表達中的數學符號體系要統一;要使學生遵守符號大小寫的書寫習慣,不要把常用的數學符號寫得過大或過小或與一般寫法不同。
2、要使學生明確符號化思想的意義與實質。我們應該意識到數學教學中無時不在使用數學語言,教師與學生間的交流及學生間的交流、合作都會用數學語言,因此教師需要啟發學生把「數學問題」譯為數學語言,讓學生對數學符號化思想及具體的數學符號就有了較為完整的、透徹的理解,並能運用它解決問題。
⑤ 數學是誰發明出來的
數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公元1000年以前的資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的)……等等各個分支,而且還在不斷發展下去。
而對於中國的數學的起源來說,最早可以追溯到上古時期。據《易•系辭》記載:上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。用算籌記數,有縱、橫兩種方式, 表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間﹝法則是:一縱十橫,百立千僵,千、十相望,萬、百相當﹞,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記•夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理﹝西方稱勾股定理﹞的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。
《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
秦漢是
中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西
漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。西漢末年﹝公元前一世紀﹞編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年﹝公元前一世紀﹞。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進__________行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率__________為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
數學是最接近上帝的語言
⑥ 九九乘法表是什麼時候誰發明的
這個沒有明確的答案,只能說勞動人們智慧的結晶,現在只能考證最早出現的年代,看我下面網路了一下最好的結果把。
里耶古鎮九九乘法表就是中國人發明的,根據劉徽的「九章算術」中記載,伏羲氏根據八卦,作九九之合爻之變,說明九九乘法的起源相當早。此外在管子、老子、戰國策等先秦典籍中,也有書中有二七十四、六七四十二等字句,足見九九乘法表在春秋戰國時代就已相當普及,甚至還傳唱「九九歌」。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。
⑦ 最早的「九九乘法表」是由誰發明的
它在中國古代早已存在。《韓詩外傳》雲;「齊桓公將設立一個宮廷來宴請和點燃草原大火。如果人們沒有到達,將會有人在99年看到他們。」古老的乘法公式是從上到下,從「9981」到「一體」。它的順序與葬禮的順序相反。古人用乘法公式開頭的兩個字「999」作為公式的名稱,所以他們稱之為999乘法表。
實際上,乘法表並非中國獨有,在西方國家也是同樣擁有。已知的世界上最古老乘法表出土於在4000年前的古巴比倫,不過它並非是十進制的,而是六十進制而非十進制的。兩河文明是六十進制的發明者,他們把一年化為360天,把圓的角度設為360度,至今影響著天文學、幾何學和時間領域。
⑧ indexnumber公式的發明者是誰啊
1981年6月,「道.瓊斯公司」的共同創立者之一——查爾斯.亨利.道在《客戶午後通訊》上首先發表了一組後來被稱為「道.瓊斯工業股股票價格平均數」,是世界上最早的股票價格平均數,一般計算步驟是:先選定一些有代表性的樣本公司,再通過簡單算術平均法,以這些公司股票收盤價之和除以樣本公司數得出。計算公式為: P=(ΣPi)/N 其中,P代表股票價格平均數,N代表樣本公司個數,Pi代表第i家公司股票計算期的收盤價。
⑨ 電流產生的熱量計算公式誰發現
焦耳 Q=I 2 Rt
⑩ 是誰發明的函數
伽俐略、笛卡爾、牛頓、萊布尼茲等人,這是最早的,那個時候還不叫函數。