A. 排列組合公式是誰發明的
排列
公式
是
用a來表示的
,
老版教材
是用p的
an
m(m是上標)
=n的階乘/(n-m)的階乘
組合的內公式
是
c
的
算了
符號
我不太好打,你容自己看一下參考資料裡面有詳細的公式
排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.
組合:從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從
n個不同元素中取出m個元素的一個組合.
舉個例子,從甲乙丙丁
4人中選擇3人
如果是排列的話,甲乙丙
與
甲丙乙
乙丙甲
乙甲丙
丙甲乙
丙乙甲
是不相同的
,就是說要考慮先後順序
a4
(3是上標)
=24
如果是組合的話,甲乙丙
與
甲丙乙
乙丙甲
乙甲丙
丙甲乙
丙乙甲
都是
甲乙丙這3個人,不考慮先後順序,
c4(3
上標
)4種方法
B. 誰是中國數學的創始者
中國是世界上數學發展最早的國家之一,也是在世界古代史上數學成就最多的國家之一。那麼,中國古代的數學是誰發明創造的呢?它的創始者究竟是誰呢?它的源頭又在哪裡呢?這是人們自然而然要關心的一個問題。 然而,由於數學在中國古代產生的時間實在是太早了,大約在四五千年以前的原始社會時期,我國的先民們就已經掌握了數和形的概念並在實踐中開始應用這些數學知識的萌芽,而我們現在又找不到確切的記載當時情況的文字材料,所以要探尋中國數學的源頭和創始人,就只能到古代的一些歷史傳說中去尋找有關線索了。 一種傳說認為中國數學的創始者是黃帝,最早的數學知識和數學工具都是在黃帝時代發明的。例如漢代的一本數學著作《數術記遺》中說,是黃帝發明了數的記法和用法。也有的書中說,最早的算數是黃帝時代一個叫「隸首」的人創作的。又相傳黃帝的老師--「大撓」發明了「甲子」。所謂「甲子」,就是用甲乙丙丁等十個「天干」與子丑寅卯等十二個「地支」配合起來以記年、記月、記日,其中包含了最早的組合數學的萌芽。這種干支記年的方法直到現在還在農歷中使用。例如1998年為戊寅年,1999年為己卯年等等。 圖1-1-111 古代的「矩」 又相傳黃帝時有一個叫「錘」的人發明了「規矩」。「規」是畫圓的工具,「矩」則是畫方的工具。我們知道,黃帝是中華民族的始祖之一,是傳說中原始部落聯盟的首領。他生活在新石器時代晚期,距今大約有四千七百多年的時間。 另一種傳說認為中國數學的創始者是伏羲。《漢書·律歷志》上說:「自伏羲畫八卦,由數起」。三國時數學家劉徽在為《九章算術注》寫的序言中,也把伏羲畫八卦看作是古代數學的起源。伏羲又稱包犧,也是傳說中原始部落聯盟的首領,他的生活年代比黃帝還要略早一些。所謂「八卦」,就是用陽卜「-」和陰卜「--」這兩種符號排列組合而成的八種卦象。據近代有人考證,這陽卜「-」和陰卜「--」正代表了最早的「一」和「二」這兩個數字,同時也代表了所有的奇數和偶數。至於八卦中所蘊含的排列組合數學思想,現在已經被國內外數學史界所公認了。 除了以上兩種傳說之外,還有一種傳說與大禹治水有關。大禹也是傳說中的原始部落聯盟領袖,據說他為了治理洪水,不辭勞苦,四處奔走,三過家門也不進去。他右手拿著規矩,左手拿著准繩,發明勾股定理來測量水流河床的深淺和寬狹。據說他還派了一個叫「豎亥」的人,步行從東極走到西極,又從南極走到北極,以此來進行最早的大地測量工作。 以上種種傳說雖然各不相同,但有一點是相同的,即都把數學的創始者和發明權歸之於傳說中的某一個領袖人物或英雄人物。其實,數學和自然科學的任何一門學科一樣,絕不是某一個英雄人物能夠一下子突然發明的。它的產生和形成,需要經過一個漫長的歷史過程。這個歷史過程,可能是幾千年,也可能是幾萬年。考古資料已經證明,早在傳說中的黃帝和伏羲之前,浙江餘姚的河姆渡人、陝西西安的半坡人以及山東和江蘇北部的大墳口人,就已經有了長方形、三角形、菱形、圓形、球形、圓柱形等幾何觀念,並已經掌握了一定的數目觀念。顯然,數學的產生,是千千萬萬的古代勞動人民在長期的生產勞動和生活實踐中逐漸積累而成的。中國數學的創始者,正是這千千萬萬的古代勞動人民。當然,那些領袖人物或英雄人物可能對數學曾經作出過非常重大的貢獻。我們可以把黃帝、隸首、大撓、捶以及伏羲和大禹等,看作是中國歷史上最早的一批偉大的數學家。圖1一1一2紹興大禹陵
C. 求排列組合發明者
1772年,旺德蒙德以[n]p表示由n個不同的元素中每次取p個的排列數。而歐拉則專於1771年以 及於屬1778年以表示由n個不同元素中每次取出p個元素的組合數。至1872年,埃汀肖森引入了 以表相同之意,這組合符號(Signs of Combinations)一直 沿用至今。
1830年,皮科克引入符號Cr以表示由n個元素中每次取出 r個元素的組合數;1869年或稍早些,劍橋的古德文以符號nPr 表示由n個元素中每次取r個元素的排列數,這用法亦延用至今。按此法,nPn便相當於現在的n!。
1880年,鮑茨以nCr及nPr分別表示由n個元素取出r個的組合數與排列數;六年後,惠特渥斯以及表示相同之意,而且,他還以表示可重復的組合數。至1899年,克里斯托爾以nPr及nCr分別表示由n個不同元素中 每次取出r個不重復之元素的排列數與組合數,並以nHr表示相同意義下之可重復的排列數,這三種符號也通用至今。
1904年,內托為一本網路辭典所寫的辭條中,以 表示上述nPr之意,以表示上述nCr之意,後者亦同時採用了。這些符號也一直用到現代。
D. 誰發明了數學
一種傳說認為中國數學的創始者是黃帝,最早的數學知識和數學工具都是在黃帝時代發明的。例如漢代的一本數學著作《數術記遺》中說,是黃帝發明了數的記法和用法。也有的書中說,最早的算數是黃帝時代一個叫「隸首」的人創作的。又相傳黃帝的老師--「大撓」發明了「甲子」。所謂「甲子」,就是用甲乙丙丁等十個「天干」與子丑寅卯等十二個「地支」配合起來以記年、記月、記日,其中包含了最早的組合數學的萌芽。這種干支記年的方法直到現在還在農歷中使用。例如1998年為戊寅年,1999年為己卯年等等。 圖1-1-111 古代的「矩」 又相傳黃帝時有一個叫「錘」的人發明了「規矩」。「規」是畫圓的工具,「矩」則是畫方的工具。我們知道,黃帝是中華民族的始祖之一,是傳說中原始部落聯盟的首領。他生活在新石器時代晚期,距今大約有四千七百多年的時間。 另一種傳說認為中國數學的創始者是伏羲。《漢書·律歷志》上說:「自伏羲畫八卦,由數起」。三國時數學家劉徽在為《九章算術注》寫的序言中,也把伏羲畫八卦看作是古代數學的起源。伏羲又稱包犧,也是傳說中原始部落聯盟的首領,他的生活年代比黃帝還要略早一些。所謂「八卦」,就是用陽卜「-」和陰卜「--」這兩種符號排列組合而成的八種卦象。據近代有人考證,這陽卜「-」和陰卜「--」正代表了最早的「一」和「二」這兩個數字,同時也代表了所有的奇數和偶數。至於八卦中所蘊含的排列組合數學思想,現在已經被國內外數學史界所公認了。 除了以上兩種傳說之外,還有一種傳說與大禹治水有關。大禹也是傳說中的原始部落聯盟領袖,據說他為了治理洪水,不辭勞苦,四處奔走,三過家門也不進去。他右手拿著規矩,左手拿著准繩,發明勾股定理來測量水流河床的深淺和寬狹。據說他還派了一個叫「豎亥」的人,步行從東極走到西極,又從南極走到北極,以此來進行最早的大地測量工作。 以上種種傳說雖然各不相同,但有一點是相同的,即都把數學的創始者和發明權歸之於傳說中的某一個領袖人物或英雄人物。其實,數學和自然科學的任何一門學科一樣,絕不是某一個英雄人物能夠一下子突然發明的。它的產生和形成,需要經過一個漫長的歷史過程。這個歷史過程,可能是幾千年,也可能是幾萬年。考古資料已經證明,早在傳說中的黃帝和伏羲之前,浙江餘姚的河姆渡人、陝西西安的半坡人以及山東和江蘇北部的大墳口人,就已經有了長方形、三角形、菱形、圓形、球形、圓柱形等幾何觀念,並已經 掌握了一定的數目觀念。顯然,數學的產生,是千千萬萬的古代勞動人民在長期的生產勞動和生活實踐中逐漸積累而成的。中國數學的創始者,正是這千千萬萬的古代勞動人民。當然,那些領袖人物或英雄人物可能對數學曾經作出過非常重大的貢獻。我們可以把黃帝、隸首、大撓、捶以及伏羲和大禹等,看作是中國歷史上最早的一批偉大的數學家。
E. 是誰發明了數學
這要說起來,源遠流長,不可能十分明確的就是誰發明了數學。
擴展如下:
中國是世界上數學發展最早的國家之一,也是在世界古代史上數學成就最多的國家之一.
那麼,中國古代的數學是誰發明創造的呢?
然而,由於數學在中國古代產生的時間實在是太早了,大約在四五千年以前的原始社會時期,我國的先民們就已經掌握了數和形的概念並在實踐中開始應用這些數學知識的萌芽,而我們現在又找不到確切的記載當時情況的文字材料,所以要探尋中國數學的源頭和創始人,就只能到古代的一些歷史傳說中去尋找有關線索了.
一種傳說認為中國數學的創始者是黃帝,最早的數學知識和數學工具都是在黃帝時代發明的.
例如漢代的一本數學著作《數術記遺》中說,是黃帝發明了數的記法和用法.
也有的書中說,最早的算數是黃帝時代一個叫「隸首」的人創作的.
又相傳黃帝的老師--「大撓」發明了「甲子」.所謂「甲子」,就是用甲乙丙丁等十個「天干」與子丑寅卯等十二個「地支」配合起來以記年、記月、記日,其中包含了最早的組合數學的萌芽.
這種干支記年的方法直到現在還在農歷中使用.例如1998年為戊寅年,1999年為己卯年等等. 又相傳黃帝時有一個叫「錘」的人發明了「規矩」.「規」是畫圓的工具,「矩」則是畫方的工具.
我們知道,黃帝是中華民族的始祖之一,是傳說中原始部落聯盟的首領.
生活在新石器時代晚期,距今大約有四千七百多年的時間.
另一種傳說認為中國數學的創始者是伏羲.
《漢書·律歷志》上說:「自伏羲畫八卦,由數起」.三國時數學家劉徽在為《九章算術注》寫的序言中,也把伏羲畫八卦看作是古代數學的起源.
F. 數學是誰創立的
數學是研究現實世界中數量關系和空間形式的科學。簡單地說,就是研究數和形的科學。
由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。在中國,最遲在商代,即已出現用十進制數字表示大數的方法;至秦漢之際,即已出現完滿的十進位制。在不晚於公元一世紀的《九章算術》中,已載了只有位值制才有可能進行的開平方、開立方的計演算法則,並載有分數的各種運算以及解線性聯立方程組的方法,還引入了負數概念。
劉徽在他註解的《九章算術》中,還提出過用十進制小數表示無理數平方根的奇零部分,但直至唐宋時期(歐洲則在16世紀斯蒂文以後)十進制小數才獲通用。在這本著作中,劉徽又用圓內接正多邊形的周長逼近圓周長,成為後世求圓周率的一般方法。
雖然中國從來沒有過無理數或實數的一般概念,但在實質上,那時中國已完成了實數系統的一切運演算法則與方法,這不僅在應用上不可缺,也為數學初期教育所不可少。至於繼承了巴比倫、埃及、希臘文化的歐洲地區,則偏重於數的性質及這些性質間的邏輯關系的研究。
早在歐幾里得的《幾何原本》中,即有素數的概念和素數個數無窮及整數惟一分解等論斷。古希臘發現了有非分數的數,即現稱的無理數。16世紀以來,由於解高次方程又出現了復數。在近代,數的概念更進一步抽象化,並依據數的不同運算規律,對一般的數系統進行了獨立的理論探討,形成數學中的若干不同分支。
開平方和開立方是解最簡單的高次方程所必須用到的運算。在《九章算術》中,已出現解某種特殊形式的二次方程。發展至宋元時代,引進了「天元」(即未知數)的明確觀念,出現了求高次方程數值解與求多至四個未知數的高次代數聯立方程組的解的方法,通稱為天元術與四元術。與之相伴出現的多項式的表達、運演算法則以及消去方法,已接近於近世的代數學。
在中國以外,九世紀阿拉伯的花拉米子的著作闡述了二次方程的解法,通常被視為代數學的鼻祖,其解法實質上與中國古代依賴於切割術的幾何方法具有同一風格。中國古代數學致力於方程的具體求解,而源於古希臘、埃及傳統的歐洲數學則不同,一般致力於探究方程解的性質。
16世紀時,韋達以文字代替方程系數,引入了代數的符號演算。對代數方程解的性質進行探討,是從線性方程組引出的行列式、矩陣、線性空間、線性變換等概念與理論的出現;從代數方程導致復數、對稱函數等概念的引入以至伽羅華理論與群論的創立。而近代極為活躍的代數幾何,則無非是高次聯立代數方程組解所構成的集合的理論研究。
形的研究屬於幾何學的范疇。古代民族都具有形的簡單概念,並往往以圖畫來表示,而圖形之所以成為數學對象是由於工具的製作與測量的要求所促成的。規矩以作圓方,中國古代夏禹泊水時即已有規、矩、准、繩等測量工具。
墨經》中對一系列的幾何概念,有抽象概括,作出了科學的定義。《周髀算經》與劉徽的《海島算經》給出了用矩觀測天地的一般方法與具體公式。在《九章算術》及劉徽註解的《九章算術》中,除勾股定理外,還提出了若干一般原理以解決多種問題。例如求任意多邊形面積的出入相補原理;求多面體的體積的陽馬鱉需的二比一原理(劉徽原理);5世紀祖(日恆)提出的用以求曲形體積特別是球的體積的「冪勢既同則積不容異」的原理;還有以內接正多邊形逼近圓周長的極限方法(割圓術)。但自五代(約10世紀)以後,中國在幾何學方面的建樹不多。
中國幾何學以測量和計算面積、體積的量度為中心任務,而古希臘的傳統則是重視形的性質與各種性質間的相互關系。歐幾里得的《幾何原本》,建立了用定義、公理、定理、證明構成的演繹體系,成為近代數學公理化的楷模,影響遍及於整個數學的發展。特別是平行公理的研究,導致了19世紀非歐幾何的產生。
歐洲自文藝復興時期起通過對繪畫的透視關系的研究,出現了射影幾何。18世紀,蒙日應用分析方法對形進行研究,開微分幾何學的先河。高斯的曲面論與黎曼的流形理論開創了脫離周圍空間以形作為獨立對象的研究方法;19世紀克萊因以群的觀點對幾何學進行統一處理。此外,如康托爾的點集理論,擴大了形的范圍;龐加萊創立了拓撲學,使形的連續性成為幾何研究的對象。這些都使幾何學面目一新。
在現實世界中,數與形,如影之隨形,難以分割。中國的古代數學反映了這一客觀實際,數與形從來就是相輔相成,並行發展的。例如勾股測量提出了開平方的要求,而開平方、開立方的方法又奠基於幾何圖形的考慮。二次、三次方程的產生,也大都來自幾何與實際問題。至宋元時代,由於天元概念與相當於多項式概念的引入,出現了幾何代數化。
在天文與地理中的星表與地圖的繪制,已用數來表示地點,不過並未發展到坐標幾何的地步。在歐洲,十四世紀奧爾斯姆的著作中已有關於經緯度與函數圖形表示的萌芽。十七世紀笛卡爾提出了系統的把幾何事物用代數表示的方法及其應用。在其啟迪之下,經萊布尼茨、牛頓等的工作,發展成了現代形式的坐標制解析幾何學,使數與形的統一更臻完美,不僅改變了幾何證題過去遵循歐幾里得幾何的老方法,還引起了導數的產生,成為微積分學產生的根源。這是數學史上的一件大事。
在十七世紀中,由於科學與技術上的要求促使數學家們研究運動與變化,包括量的變化與形的變換(如投影),還產生了函數概念和無窮小分析即現在的微積分,使數學從此進入了一個研究變數的新時代。
十八世紀以來,以解析幾何與微積分這兩個有力工具的創立為契機,數學以空前的規模迅猛發展,出現了無數分支。由於自然界的客觀規律大多是以微分方程的形式表現的,所以微分方程的研究一開始就受到很大的重視。
微分幾何基本上與微積分同時誕生,高斯與黎曼的工作又產生了現代的微分幾何。19、20世紀之交,龐加萊創立了拓撲學,開辟了對連續現象進行定性與整體研究的途徑。對客觀世界中隨機現象的分析,產生了概率論。第二次世界大戰軍事上的需要,以及大工業與管理的復雜化產生了運籌學、系統論、控制論、數理統計學等學科。實際問題要求具體的數值解答,產生了計算數學。選擇最優途徑的要求又產生了各種優化的理論、方法。
力學、物理學同數學的發展始終是互相影響互相促進的,特別是相對論與量子力學推動了微分幾何與泛函分析的成長。此外在19世紀還只用到一次方程的化學和幾乎與數學無緣的生物學,都已要用到最前沿的一些數學知識。
十九世紀後期,出現了集合論,還進入了一個批判性的時代,由此推動了數理邏輯的形成與發展,也產生了把數學看作是一個整體的各種思潮和數學基礎學派。特別是1900年,德國數學家希爾伯特在第二屆國際數學家大會上的關於當代數學重要問題的演講,以及三十年代開拓的,以結構概念統觀數學的法國布爾巴基學派的興起,對二十世紀數學的發展產生了巨大、深遠的影響,科學的數學化一語也開始為人們所樂道。
數學的外圍向自然科學、工程技術甚至社會科學中不斷滲透擴大,並從中吸取營養,出現了一些邊緣數學。數學本身的內部需要也孽生了不少新的理論與分支。同時其核心部分也在不斷鞏固提高並有時作適當調整以適應外部需要。總之,數學這棵大樹茁壯成長,既枝葉繁茂又根深蒂固。
在數學的蓬勃發展過程中,數與形的概念不斷擴大且日趨抽象化,以至於不再有任何原始計數與簡單圖形的蹤影。雖然如此,在新的數學分支中仍有著一些對象和運算關系藉助於幾何術語來表示。如把函數看成是某種空間的一個點之類。這種做法之所以行之有效,歸根結底還是因為數學家們已經熟悉了那種簡易的數學運算與圖形關系,而後者又有著長期深厚的現實基礎。而且,即使是最原始的數字如1、2、3、4,以及幾何形象如點與直線,也已經是經過人們高度抽象化了的概念。因此如果把數與形作為廣義的抽象概念來理解,則前面提到的把數學作為研究數與形的科學這一定義,對於現階段的近代數學,也是適用的。
由於數學研究對象的數量關系與空間形式都來自現實世界,因而數學盡管在形式上具有高度的抽象性,而實質上總是紮根於現實世界的。生活實踐與技術需要始終是數學的真正源泉,反過來,數學對改造世界的實踐又起著重要的、關鍵性的作用。理論上的豐富提高與應用的廣泛深入在數學史上始終是相伴相生,相互促進的。
但由於各民族各地區的客觀條件不同,數學的具體發展過程是有差異的。大體說來,古代中華民族以竹為籌,以籌運算,自然地導致十進位值制的產生。計算方法的優越有助於對實際問題的具體解決。由此發展起來的數學形成了一個以構造性、計算性、程序化與機械化為其特色,以從問題出發進而解決問題為主要目標的獨特體系。而在古希臘則著重思維,追求對宇宙的了解。由此發展成以抽象了的數學概念與性質及其相互間的邏輯依存關系為研究對象的公理化演繹體系。
中國的數學體系在宋元時期達到高峰以後,開始陷於停頓且幾至消失。而在歐洲,經過文藝復興運動、宗教革命、資產階級革命等一系列的變革,導致了工業革命與技術革命。機器的使用,不論中外都由來已久。但在中國,則由於明初被帝王斥為奇技淫巧而受阻抑。
在歐洲,則由於工商業的發展與航海的刺激而得到發展,機器使人們從繁重的體力勞動中解放出來,並引導到理論力學和一般的運動和變化的科學研究。當時的數學家都積極參與了這些變革以及相應數學問題的解決,產生了積極的效果。解析幾何與微積分的誕生,成為數學發展的一個轉折點。17世紀以來數學的飛躍,大體上可以看成是這些成果的延續與發展。
20世紀出現了各種嶄新的技術,產生了新的技術革命,特別是電子計算機的出現,使數學又面臨了一個新的時代。這一時代的特點之一就是部分腦力勞動的逐步機械化。與17世紀以來以圍繞連續、極限等概念為主導思想與方法的數學不同,由於計算機研製與應用的需要,離散數學與組合數學開始受到重視。
計算機對數學的作用已不僅僅只限於數值計算,也開始更多的涉及符號運算(包括機器證明等數學研究)。為了與計算機更好地配合,數學對於構造性、計算性、程序化與機械化的要求也顯得頗為突出。
例如,代數幾何是一門高度抽象化的數學,而最近出現的計算性代數幾何與構造性代數幾何的提法,即其端倪之一。總之,數學正隨著新的技術革命而不斷發展。
G. 數學誰發明的
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語Μαθηματικ?
mathematikós)意思是「學問的基礎」,源於ματθημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了認知到如何去數實際物質的數量,史前的人類亦了解如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail
B.
Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」
H. 數學的發明者是誰
對於中國來說,是黃帝、大撓、大禹等古代勞動人民發明了數學。
古代的「矩」 又相傳黃帝時有一個叫「錘」的人發明了「規矩」。「規」是畫圓的工具,「矩」則是畫方的工具。我們知道,黃帝是中華民族的始祖之一,是傳說中原始部落聯盟的首領。他生活在新石器時代晚期,距今大約有四千七百多年的時間。
另一種傳說認為中國數學的創始者是伏羲。《漢書·律歷志》上說:「自伏羲畫八卦,由數起」。三國時數學家劉徽在為《九章算術注》寫的序言中,也把伏羲畫八卦看作是古代數學的起源。伏羲又稱包犧,也是傳說中原始部落聯盟的首領,他的生活年代比黃帝還要略早一些。所謂「八卦」,就是用陽卜「-」和陰卜「--」這兩種符號排列組合而成的八種卦象。據近代有人考證,這陽卜「-」和陰卜「--」正代表了最早的「一」和「二」這兩個數字,同時也代表了所有的奇數和偶數。至於八卦中所蘊含的排列組合數學思想,現在已經被國內外數學史界所公認了。
除了以上兩種傳說之外,還有一種傳說與大禹治水有關。大禹也是傳說中的原始部落聯盟領袖,據說他為了治理洪水,不辭勞苦,四處奔走,三過家門也不進去。他右手拿著規矩,左手拿著准繩,發明勾股定理來測量水流河床的深淺和寬狹。據說他還派了一個叫「豎亥」的人,步行從東極走到西極,又從南極走到北極,以此來進行最早的大地測量工作。
以上種種傳說雖然各不相同,但有一點是相同的,即都把數學的創始者和發明權歸之於傳說中的某一個領袖人物或英雄人物。其實,數學和自然科學的任何一門學科一樣,絕不是某一個英雄人物能夠一下子突然發明的。它的產生和形成,需要經過一個漫長的歷史過程。這個歷史過程,可能是幾千年,也可能是幾萬年。考古資料已經證明,早在傳說中的黃帝和伏羲之前,浙江餘姚的河姆渡人、陝西西安的半坡人以及山東和江蘇北部的大墳口人,就已經有了長方形、三角形、菱形、圓形、球形、圓柱形等幾何觀念,並已經 掌握了一定的數目觀念。顯然,數學的產生,是千千萬萬的古代勞動人民在長期的生產勞動和生活實踐中逐漸積累而成的。中國數學的創始者,正是這千千萬萬的古代勞動人民。當然,那些領袖人物或英雄人物可能對數學曾經作出過非常重大的貢獻。我們可以把黃帝、隸首、大撓、捶以及伏羲和大禹等,看作是中國歷史上最早的一批偉大的數學家。